Snarks with Total Chromatic Number 5

نویسندگان

  • Gunnar Brinkmann
  • Simone Dantas
  • Celina M. H. de Figueiredo
  • Myriam Preissmann
  • Diana Sasaki
چکیده

A k-total-coloring of G is an assignment of k colors to the edges and vertices of G, so that adjacent and incident elements have different colors. The total chromatic number of G, denoted by χT (G), is the least k for which G has a k-total-coloring. It was proved by Rosenfeld that the total chromatic number of a cubic graph is either 4 or 5. Cubic graphs with χT = 4 are said to be Type 1, and cubic graphs with χT = 5 are said to be Type 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The hunting of a snark with total chromatic number 5

A snark is a cyclically-4-edge-connected cubic graph with chromatic index 4. In 1880, Tait proved that the Four-Color Conjecture is equivalent to the statement that every planar bridgeless cubic graph has chromatic index 3. The search for counter-examples to the FourColor Conjecture motivated the definition of the snarks. A k-total-coloring of G is an assignment of k colors to the edges and ver...

متن کامل

The total-chromatic number of some families of snarks

The total chromatic number χ T (G) is the least number of colours needed to colour the vertices and edges of a graph G, such that no incident or adjacent elements (vertices or edges) receive the same colour. It is known that the problem of determining the total chromatic number is NP-hard and it remains NP-hard even for cubic bipartite graphs. Snarks are simple connected bridgeless cubic graphs...

متن کامل

Diana Sasaki Simone Dantas Celina

Snarks are cubic bridgeless graphs of chromatic index 4 which had their origin in the search of counterexamples to the Four Color Conjecture. In 2003, Cavicchioli et al. proved that for snarks with less than 30 vertices, the total chromatic number is 4, and proposed the problem of finding (if any) the smallest snark which is not 4-total colorable. Several families of snarks have had their total...

متن کامل

The Circular Chromatic Index of Flower Snarks

We determine the circular chromatic index of flower snarks, by showing that χc(F3) = 7/2, χ ′ c(F5) = 17/5 and χ ′ c(Fk) = 10/3 for every odd integer k ≥ 7, where Fk denotes the flower snark on 4k vertices.

متن کامل

The circular chromatic index of Goldberg snarks

We determine the exact values of the circular chromatic index of the Goldberg snarks, and of a related family, the twisted Goldberg snarks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012